Computational Challenge in the Coupled Filtering Method for Ultrasound Image-based Tissue Deformation Analysis

Weichuan Yu, Ph.D.

Departments of Electronic and Computer Engineering
The Hong Kong University of Science and Technology

Joint work with Tianzhu Liang, Lingsing Yung, Chen Zhang, and Philip Mok
Overview

- Background of tissue deformation analysis
- Feature-motion decorrelation problem in ultrasound speckle tracking
- Coupled filtering method and its merit
- Computational challenge
Background

Manual Palpation and Ultrasound Elasticity Imaging
Principle of Elastography

1. Take image I_1 before tissue deformation
2. Take another image I_2 after deformation
3. Calculate tissue displacement using I_1 and I_2
4. Derive strain values based on displacement

(From M. Insana., Ultrasonic Imaging Laboratory at UIUC)
Issues in Elastography

- Basic requirement: accurate estimation of tissue displacement
- Problem: feature-motion decorrelation
- Consequence: motion tracking results CANNOT reveal underlying tissue motion faithfully.
Echocardiography
Issues in Cardiac Motion Analysis

- Popular approach: speckle tracking
- Fundamental assumption: speckles are motion-invariant
- Problem: feature-motion decorrelation again!
Feature-Motion Decorrelation

- Why do we have this phenomenon?
- When will it happen?
- Can we compensate for the decorrelation?

Answers lie in the understanding of ultrasound imaging process.
Principle of Ultrasound Imaging
A Linear Convolution Model of Ultrasound Imaging Process

- Point Spread Function
 \[H(\vec{X}) = e^{-\frac{1}{2} \vec{X}^T \Gamma \vec{X}} \cdot \cos(2\pi \vec{X}^T \vec{U}_0). \]

- Scatterer Model
 \[T_n(\vec{X}; \vec{X}_n) = a_n \delta(\vec{X} - \vec{X}_n) \]

- RF Signal
 \[
 I(\vec{X}; \vec{X}_n) = \sum_{n=1}^{N} T_n(\vec{X}) \ast H(\vec{X}; \vec{X}_n)
 = \sum_{n=1}^{N} a_n e^{-\frac{1}{2} (\vec{X} - \vec{X}_n)^T \Gamma (\vec{X} - \vec{X}_n)} \cdot \cos(2\pi (\vec{X} - \vec{X}_n)^T \vec{U}_0).
 \]

- B-Mode Signal
 \[I_B(X; \vec{X}_n) = |I_A(\vec{X}; \vec{X}_n)|. \]

with
\[
I_A(\vec{X}; \vec{X}_n) = \sum_{n=1}^{N} a_n e^{-\frac{1}{2} (\vec{X} - \vec{X}_n)^T \Gamma (\vec{X} - \vec{X}_n)} \cdot e^{j2\pi (\vec{X} - \vec{X}_n)^T \vec{U}_0}.
\]

(Meunier, Physics in Medicine and Biology, 43:1241-1254, 1998)
Intensity before and after Tissue Motion

- **Tissue Motion Model:**
 \[\tilde{X}_n' = M \tilde{X}_n = \begin{pmatrix} R_{3 \times 3} & \bar{D}_{3 \times 1} \\ \bar{O}_{1 \times 3} & 1 \end{pmatrix} \tilde{X}_n \]

- **Tissue motion:**
 \[I_A(\tilde{X}; M \tilde{X}_n) = \sum_{n=1}^{N} a_n e^{-\frac{1}{2} (M^{-1} \tilde{X} - \tilde{X}_n)^T M^T \Gamma M (M^{-1} \tilde{X} - \tilde{X}_n)} \cdot e^{j2\pi (M^{-1} \tilde{X} - \tilde{X}_n)^T M^T \bar{U}_0} \]

- **Geometric transform**
 \[I_A(M^{-1} \tilde{X}; \tilde{X}_n) = \sum_{n=1}^{N} a_n e^{-\frac{1}{2} (M^{-1} \tilde{X} - \tilde{X}_n)^T \Gamma (M^{-1} \tilde{X} - \tilde{X}_n)} \cdot e^{j2\pi (M^{-1} \tilde{X} - \tilde{X}_n)^T \bar{U}_0} \]

- **No Feature-Motion Decorrelation Means:**
 \[I_A(\tilde{X}; M \tilde{X}_n) = I_A(M^{-1} \tilde{X}; \tilde{X}_n) \]
 i.e. \[M^T \Gamma M = \Gamma \] for the first \(3 \times 3\) part \((8) \)
 \[M^T \bar{U}_0 = \bar{U}_0 \] \((9) \)

(Yu et al., *Medical Image Analysis*, 10:495-508, 2006)
Understanding of Decorrelation

- Why?
 relative position change of scatterers during convolution

- When?
 - Decorrelation predictable using Eqs. (8) and (9)
 - e.g. lateral rotation or deformation of scatterers will cause decorrelation.

- Decorrelation compensation:
 ill-posed inverse problem as much more unknowns than the data available

- What can we do now?
Related Works I

- Using high frame rate imaging method
 - O’Donnell et al.: 200Hz for 2-D
 - Ultrafast ultrasound imaging: up to 10000 Hz for 2-D
 - Low decorrelation between neighboring frames
 - Large deformation analysis still possible by accumulating many frames

- Limitations
 - high frame rate in 3-D: only 20~28 Hz
 - echocardiography: large deformation between frames
 - decorrelation compensation untouched
Related Works II

- Using additional constraints
 - tissue incompressibility model \((\text{Skovoroda et al. TUFFC 1999})\)
 - deformable mesh method \((\text{Yeung et al. TMI 1998})\)
 - finite element method \((\text{Palmeri et al. TUFFC 2005})\)
 - regularized multi-scale estimation method \((\text{Pellot-Barakat et al. TMI 2004})\)

- Limitations
 - approximate solution
 - decorrelation compensation untouched
Related Works III

- Modeling image variations caused by tissue motion
 - 1-D: temporal stretching

- Common property
 Modeling variations as shift plus scaling.

- Limitations
 Will fail when deformation is large → Why?
Principle of Companding Method

Tissue before deformation: \(I(\vec{X}; \vec{X}_n) = \sum_{n=1}^{N} T_n(\vec{X}; \vec{X}_n) \ast H(\vec{X}). \)

Tissue after deformation: \(I(\vec{X}; \vec{Y}_n) \) with \(\vec{Y}_n = M \vec{X}_n + \vec{T}. \)

Tissue before and after deformation

Effect of companding in tracking

\(I(\vec{X}; \vec{X}_n) \)

\(I(\vec{X}; \vec{Y}_n) \)

\(I(M \vec{X} + \vec{T}; \vec{Y}_n) \)
Mathematical Details

\[T_n(\vec{X}; \vec{Y}_n) = a_n \delta(\vec{X} - (M\vec{X}_n + \vec{T})) \]
\[= \frac{1}{|M|} a_n \delta(M^{-1}(\vec{X} - \vec{T}) - \vec{X}_n) \]
\[= \frac{1}{|M|} T_n(M^{-1}(\vec{X} - \vec{T}); \vec{X}_n). \]

\[T_n(M\vec{X} + \vec{T}; \vec{Y}_n) = \frac{1}{|M|} T_n(\vec{X}; \vec{X}_n). \]

\[I(M\vec{X} + \vec{T}; \vec{Y}_n) \]
\[= \sum_{n=1}^{N} \int_{R^3} T_n(M\vec{X} + \vec{T} - \vec{X}'; \vec{Y}_n) H(\vec{X}') d\vec{X}' \]
\[= \sum_{n=1}^{N} \int_{R^3} T_n \left(M(\vec{X} - M^{-1}\vec{X}') + \vec{T}; \vec{Y}_n \right) H(\vec{X}') d\vec{X}' \]

\[I(M\vec{X} + \vec{T}; \vec{Y}_n) \ast H(\vec{X}) = I(\vec{X}; \vec{X}_n) \ast H(M\vec{X}). \]

\[\sum_{n=1}^{N} \int_{R^3} \frac{1}{|M|} T_n \left(\vec{X} - M^{-1}\vec{X}'; \vec{X}_n \right) H(\vec{X}') d\vec{X}' \]

\[X'' = M^{-1} X' \]
\[\sum_{n=1}^{N} \int_{R^3} T_n \left(\vec{X} - X''; \vec{X}_n \right) H(M\vec{X}'') d\vec{X}'' \]
\[= \sum_{n=1}^{N} T_n(\vec{X}; \vec{X}_n) \ast H(M\vec{X}). \]

Valuable insight!

Basis of new method.

Explains the success AND limitation of the companding method.
Algorithm 1 Coupled Filtering Method

Input:
$I(\bar{X}; \bar{X}_n)$: RF image block before tissue deformation;
$I(\bar{X}; \bar{Y}_n)$: RF image block after tissue deformation.

Parameter:
search range and search step of M and \bar{T}

Output:
The optimal M_o and \bar{T}_o that best satisfy
$I(M\bar{X} + \bar{T}; \bar{Y}_n) \ast H(\bar{X}) = I(\bar{X}; \bar{X}_n) \ast H(M\bar{X})$.

/* Phase 1-Initialization */
Set $M_o = I$, $\bar{T}_o = 0$, and the threshold $C_m = 0$.
/* We use the correlation coefficient as the metric */

/* Phase 2-Search for Solution */
while M and \bar{T} still in the search range do
 $F_1 \leftarrow I(M\bar{X} + \bar{T}; \bar{Y}_n) \ast H(\bar{X})$.
 $F_2 \leftarrow I(\bar{X}; \bar{X}_n) \ast H(M\bar{X})$.
 $C \leftarrow \frac{\sum_{\bar{X}} (F_1 \cdot F_2)}{\sqrt{\sum_{\bar{X}} F_1^2 \cdot \sum_{\bar{X}} F_2^2}}$.
 if $C > C_m$ then
 $C_m \leftarrow C$, $M_o \leftarrow M$, $\bar{T}_o \leftarrow \bar{T}$
 end if
 Update M and \bar{T} based on the pre-defined search step
end while

return M_o and \bar{T}_o
Comparison Using Simulation

- Use the linear convolution model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Frequency of Ultrasound Transducer</td>
<td>4MHz (MegaHertz)</td>
</tr>
<tr>
<td>Ultrasound Speed</td>
<td>1540m/s (Meter/Second)</td>
</tr>
<tr>
<td>Resolution Cell Size</td>
<td>1mm × 1mm × 0.5mm (millimeter)</td>
</tr>
<tr>
<td>Range Along x-Axis</td>
<td>-5mm ~ 5mm</td>
</tr>
<tr>
<td>Range Along y-Axis</td>
<td>-5mm ~ 5mm</td>
</tr>
<tr>
<td>Range Along z-Axis (Beam Direction)</td>
<td>0mm ~ 5mm</td>
</tr>
<tr>
<td>Voxel Size</td>
<td>0.0625mm x 0.0625mm x 0.03125mm</td>
</tr>
</tbody>
</table>

- Deform the scatterers and recalculate the image

\[
M = \begin{bmatrix}
1 + \varepsilon_x \\
1 + \varepsilon_y \\
1 + \varepsilon_z
\end{bmatrix}
\]

\[\varepsilon_x = \varepsilon_y = -0.5 \varepsilon_z\]
Correlation Coefficient vs. Axial Compression

The graph shows the mean correlation coefficients of correlation coefficients vs. applied strain (%). There are three lines representing different preprocessing methods:

- Black line: no preprocessing
- Blue line: companding
- Red line: coupled filtering

The x-axis represents the applied strain (%) ranging from -10 to 10, while the y-axis represents the mean correlation coefficients ranging from -0.6 to 1.0.
Correlation Coefficient vs. Lateral Rotation

- Mean correlation coefficients
- Rotation angle (degree)

Graph showing correlation coefficients for different preprocessing methods:
- No preprocessing
- Companding
- Coupled filtering
Phantom Data Result

- Phantom Image I
Phantom Data Result

- Phantom Image II
Companding Result

- 5% compression case

mean correlation coefficient: 0.65
Coupled Filtering Result

- 5% compression case

mean correlation coefficient: 0.93
Signal Quality Check
The Computational Challenge: I

High-dimensional parameter space!
- M: $df = 8$ for 3-D, $df = 3$ for 2-D
- T: $df = 3$ for 3-D, $df = 2$ for 2-D

Speed up of computational at the algorithm level
- Use multi-scale framework
- Tissue incompressibility constraint

Speed up of computational at the hardware level
- **GPU implementation**: 5 hours to analyze a pair of 1001x201 images using the NVIDIA GeForce GTX 580 graphic card.
- **FPGA implementation**: 15 minutes to finish the same analysis using the XILINX Virtex-7 XC7VX690T FPGA card.
The Computational Challenge: II

- Our goal: < 1 minute for 2-D,
 <10 minutes for 3-D

- Apparently, hardware acceleration is not going to be enough.
- We may still have to develop new algorithms.

- Your suggestions are welcome!
Thank you!

THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
References

- 余维川，梁天柱 “有利于运动估计与特征-运动去相关补偿的方法、装置和系统”。中国专利申请号：ZL 2010 8 0017129.3 授权公告日期：2013.08.21
