AN L_1 CONSTRAINED MINIMIZATION APPROACH TO THE HIGH-DIMENSIONAL
MARKOWITZ OPTIMIZATION PROBLEM

Zhen Zhang, Zhenzhong Huang, Biwei Song

Department of Mathematics, 417, Block 3, Wisdom Valley, Southern University of
Science and Technology, Shenzhen, China

Email: zhangz@sustc.edu.cn Website: http://www.math.hku.hk/

Recently, portfolio selection among a huge number of stocks has become a
vivid research topic. Machine learning and random matrix techniques play very
important roles in this so-called high-dimensional portfolio optimization prob-
lem. We propose an L_1 constrained minimization approach to solve the large-
scale Markowitz optimization problem. In particular, we estimate the portfolio
weights $\Sigma^{-1}\mu$ (Σ is covariance matrix and μ is vector of expected return), and
its corresponding expected return $\mu^T\Sigma^{-1}\mu$. Based on these two estimators for
any given risk constraint σ, we can solve for the sparse portfolio which asymp-
totically yields the maximum expected return and meanwhile satisfies the risk
constraint σ. We also prove that such portfolio can achieve the sign consis-
tency asymptotically, which means that we select the right stocks(sparsity) in
the right position (sign consistency).