SINGULAR VECTOR DISTRIBUTION FOR
MATRIX DENOSING

Zhigang Bao, Xiucai Ding, Ke Wang

Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong

Email: mazgbao@ust.hk Website: http://mazgbao.people.ust.hk

In this talk, we will introduce some recent results about the limiting behavior of the singular vectors of the high-dimensional matrix denosing model $Y = S + X$. Here S is a low rank deterministic matrix and X is a random noise matrix, and both are $M \times n$ rectangle. In the scenario that M and n are comparably large and the signals are supercritical, we study the fluctuation of the outlier singular vectors of Y. More specifically, we derive the limiting distribution of angles between the principal singular vectors of Y and their deterministic counterparts, i.e., the singular vectors of S. We will show that the limiting distribution is non-universal, and it depends on the structure of S and the distribution of X. Further, we also derive the distribution for the sum of principal angles between two subspaces, spanned by the principal singular vectors of Y, and those of S, respectively.